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Abstract

An adversarial example is an example that has been ad-
justed to produce the wrong label when presented to a sys-
tem at test time. If adversarial examples existed that could
fool a detector, they could be used to (for example) wreak
havoc on roads populated with smart vehicles. Recently, we
described our difficulties creating physical adversarial stop
signs that fool a detector. More recently, Evtimov et al. pro-
duced a physical adversarial stop sign that fools a proxy
model of a detector. In this paper, we show that these physi-
cal adversarial stop signs do not fool two standard detectors
(YOLO and Faster RCNN) in standard configuration. Evti-
mov et al.’s construction relies on a crop of the image to the
stop sign; this crop is then resized and presented to a clas-
sifier. We argue that the cropping and resizing procedure
largely eliminates the effects of rescaling and of view an-
gle. Whether an adversarial attack is robust under rescal-
ing and change of view direction remains moot. We argue
that attacking a classifier is very different from attacking a
detector, and that the structure of detectors – which must
search for their own bounding box, and which cannot esti-
mate that box very accurately – likely makes it difficult to
make adversarial patterns. Finally, an adversarial pattern
on a physical object that could fool a detector would have
to be adversarial in the face of a wide family of parametric
distortions (scale; view angle; box shift inside the detector;
illumination; and so on). Such a pattern would be of great
theoretical and practical interest. There is currently no evi-
dence that such patterns exist.

1. Introduction
An adversarial example is an example that has been ad-

justed to produce the wrong label when presented to a sys-
tem at test time. Adversarial examples are of interest only
because the adjustments required seem to be very small and
are easy to obtain [23, 7, 5]. Numerous search procedures
generate adversarial examples [14, 16, 15]. There is fair evi-
dence that it is hard to tell whether an example is adversarial
(and so (a) evidence of an attack and (b) likely to be mis-

classified) or not [20, 8, 21, 12, 2, 4]. Current procedures to
build adversarial examples for deep networks appear to sub-
vert the feature construction implemented by the network to
produce odd patterns of activation in late stage RELU’s; this
can be exploited to build one form of defence [10]. There
is some evidence that other feature constructions admit ad-
versarial attacks, too [12]. The success of these attacks can
be seen as a warning not to use very highly non-linear fea-
ture constructions without having strong mathematical con-
straints on what these constructions can do; but taking that
position means one cannot use methods that are largely ac-
curate and effective.

It is important to distinguish between a classifier and a
detector to understand the current state of the art. A clas-
sifier accepts an image and produces a label. Classifiers
are scored on accuracy. A detector, like FasterRCNN [18],
identifies image boxes that are “worth labelling”, and then
generates labels (which might include background) for
each. The final label generation step employs a classifier.
However, the statistics of how boxes span objects in a de-
tector are complex and poorly understood. Some modern
detectors like YOLO 9000 [17] predict boxes and labels
using features on a fixed grid, resulting in fairly complex
sampling patterns in the space of boxes, and meaning that
pixels outside a box may participate in labelling that box.
One cannot have too many boxes, because too many boxes
means much redundancy; worse, it imposes heavy demands
on the accuracy of the classifier. Too few boxes chances
missing objects. Detectors are scored on a composite score,
taking into account both the accuracy with which the detec-
tor labels the box and the accuracy of the placement of the
box.

It is usual to attack classifiers, and all the attacks of
which we are aware are attacks on classifiers. However,
for many applications, classifiers are not themselves use-
ful. Road signs are a good example. A road sign classifier
would be applied to images that consist largely of road sign
(e.g. those of [22]). But there is little application need for
a road-sign classifier except as a component of a road sign
detector, because one doesn’t usually have to deal with im-
ages that consist largely of road sign. Instead, one deals
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with images that contain many things, and must find and
label the road sign. It is quite natural to study road sign
classifiers (e.g. [19]) because image classification remains
difficult and academic studies of feature constructions are
important. But there is no particular threat posed by an at-
tack on a road sign classifier. An attack on a road sign de-
tector is an entirely different matter. For example, imagine
possessing a template that, with a can of spray paint, could
ensure that a detector read a stop sign as a yield sign (or
worse!). As a result, it is important to know whether (a)
such examples could exist and (b) how robust their adver-
sarial property is in practice.

Printing adversarial images then photographing them can
retain their adversarial property [9, 1], which suggests ad-
versarial examples might exist in the physical world. Ad-
versarial examples in the physical world could cause a great
deal of mischief. In earlier work, we showed that it was
difficult to build physical examples that fooled a stop-sign
detector [11]. In particular, if one actually takes video of
adversarial stop-signs out of doors, the adversarial pattern
does not appear to affect the performance of the detector by
much. We speculated that this might be because adversarial
patterns were disrupted by being viewed at different scales,
rotations, and orientations. This generated some discussion.
OpenAI demonstrated a search procedure that could pro-
duce an image of a cat that was misclassified when viewed
at multiple scales [1]. There is some blurring of the fur tex-
ture on the cat, but this would likely be imperceptible to
most observers. OpenAI also demonstrated a search proce-
dure that could produce an image of a cat that was misclas-
sified when viewed at multiple scales and orientations [1].
However, there are significant visible artifacts on that im-
age; few would feel that it had not obviously been tampered
with.

Recently, Evtimov et al. have demonstrated several
physical stop-signs that are misclassified [3]. Their attack
is demonstrated on stop-signs that are cropped from images
and presented to a classifier. By cropping, they have prox-
ied the box-prediction process in a detector; however, their
attack is not intended as an attack on a detector (the paper
does not use the word “detector”, for example). In this pa-
per, we show that standard off-the-shelf detectors that have
not seen adversarial examples in training detect their stop
signs rather well, under a variety of conditions. We explain
(a) why their result is puzzling; (b) why their result may
have to do with specific details of their pipeline model, par-
ticularly the classifier construction and (c) why the distinc-
tion between a classifier and a detector means their work has
not put the core issue – can one build physical adversarial
stop-signs? – to rest.

2. Experimental Results

Evtimov et. al have demonstrated a construction of phys-
ical adversarial stop signs [3]. They demonstrate poster at-
tacks (the stop sign is covered with a poster that looks like
a faded stop sign) and sticker attacks (the attacker makes
stickers placed on particular locations on a stop sign), and
conclude that one can make physical adversarial stop signs.
There are two types of tests: stationary tests, where the sign
is imaged from a variety of orientations and directions; and
drive-by tests, where the sign is viewed from a camera based
on a car.

We obtained two standard detectors (the MS-COCO pre-
trained standard YOLO [17]; Faster RCNN [18], pretrained
version available on github) and applied them to the images
and videos from their paper. First, we applied both detectors
on the images shown in the paper (reproduced as Figure 1
for reference). All adversarial stop-signs are detected by
both detectors (Figure 2 and Figure 3).

We downloaded videos provided by the authors
at https://iotsecurity.eecs.umich.edu/
#roadsigns, and applied the detectors to those videos.
We find:

• YOLO detects the adversarial stop signs produced by
poster attacks about as well as the true stop signs (fig-
ure 4, and the videos we provide at https://www.
youtube.com/watch?v=EfbonX1lE5s);

• YOLO detects the adversarial stop signs produced by
sticker attacks about as well as the true stop signs (fig-
ure 5, and the videos we provide at https://www.
youtube.com/watch?v=GOjNKQtFs64);

• Faster RCNN detects the adversarial stop signs
produced by poster attacks about as well as the
true stop signs (figure 6, and the videos we pro-
vide at https://www.youtube.com/watch?
v=x53ZUROX1q4);

• Faster RCNN detects the adversarial stop signs
produced by sticker attacks about as well as the
true stop signs (figure 7, and the videos we pro-
vide at https://www.youtube.com/watch?
v=p7wwvWdn2pA);

• Faster RCNN detects stop signs rather more accurately
than YOLO;

• both YOLO and Faster RCNN detect small stop signs
less accurately; as the sign shrinks in the image, YOLO
fails significantly earlier than Faster RCNN.

These effects are so strong that there is no point in signifi-
cance testing, etc.
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Camoutflage Art
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       100%            66.67%           100%           80%
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Figure 1: Table IV of [3], reproduced for the readers’ convenience. This table shows figures of different adversarial construc-
tions, from different distances and viewed at different angles.

Video can be found at:

• https://www.youtube.com/watch?v=
afIr6_cvoqY (YOLO; poster);

• https://www.youtube.com/watch?v=
rqLhTZZ0U2w) (YOLO; poster);

• https://www.youtube.com/watch?v=
Ep-aE8T3Igs (YOLO; sticker);

• https://www.youtube.com/watch?v=
nCcoJBQ8C3c (YOLO; sticker);

• https://www.youtube.com/watch?v=
10DDFs73_6M (FasterRCNN; poster);

• https://www.youtube.com/watch?v=
KQyzQtuyZxc (FasterRCNN; poster);

• https://www.youtube.com/watch?v=
FRDyz7tDVdM (FasterRCNN; sticker);
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Figure 2: YOLO detection results on the stop signs of figure 1.

• https://www.youtube.com/watch?v=
F-iefz8jGQg (FasterRCNN; sticker).

At our request, the authors kindly provided full resolu-
tion versions of the videos at https://iotsecurity.
eecs.umich.edu/#roadsigns. We applied YOLO
and Faster RCNN detectors to those videos. We find:

• YOLO detects the adversarial stop signs produced by
poster attacks well (figure 8);

• YOLO detects the adversarial stop signs produced by
sticker attacks (figure 9);

• Faster RCNN detects the adversarial stop signs pro-
duced by poster attacks very well (figure 10);

• Faster RCNN detects the adversarial stop signs pro-
duced by sticker attacks very well (figure 11);

• Faster RCNN detects stop signs rather more accurately
than YOLO;

• YOLO works better on higher resolution video;

• Faster RCNN detect even far and small stop signs ac-
curately.

https://www.youtube.com/watch?v=F-iefz8jGQg
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Figure 3: Faster RCNN detection results on the stop signs of figure 1.

These effects are so strong that there is no point in sig-
nificance testing, etc.

3. Classifiers and Detectors are Very Different
Systems

The details of the system attacked are important in as-
sessing the threat posed by Evtimov et al.’s stop signs. Their
process is: acquire image (or video frame); crop to sign;
then classify that box. This process is seen in earlier road
sign literature, including [22, 19]. The attack is on the clas-

sifier. There are two classifiers, distinguished by architec-
ture and training details. LISA-CNN consists of three con-
volutional layers followed by a fully connected layer ( [3],
p5, c1), trained to classify signs into 17 classes ( [3], p4, c2),
using the LISA dataset of US road signs [13]. The other is
a publicly available implementation (from [24]) of a classi-
fier demonstrated to work well at road signs (in [19]); this
is trained on the German Traffic Sign Recognition Bench-
mark ([22]), with US stop signs added. Both classifiers are
accurate ( [3], p5, c1). Each classifier is applied to 32× 32
images ( [3], p4, c2). However, in both stationary and drive



Figure 4: In relatively low resolution, YOLO detects printed poster physical adversarial stop sign and real stop sign similarly.

Figure 5: In relatively low resolution, YOLO detects sticker physical adversarial stop sign and real stop sign similarly.

by tests, the image is cropped and resized ( [3], p8, c2).

An attack on a road sign classifier is of no particular in-
terest in and of itself, because no application requires clas-
sification of close cropped images of road signs. An attack
on a road sign detector is an entirely different matter. We
interpret Evtimov et al.’s pipeline as a proxy model of a
detection system, where the cropping procedure spoofs the
process in a detector that produces bounding boxes. This is
our interpretation of the paper, but it is not an unreasonable
interpretation; for example, table VII of [3] shows boxes

placed over small road signs in large images, which sug-
gests authors have some form of detection process in mind.
We speculate that several features of this proxy model make
it a relatively poor model of a modern detection system.
These features also make the classifier that labels boxes rel-
atively vulnerable to adversarial constructions.

The key feature of detection systems is that they tend not
to get the boxes exactly right (for example, look at the boxes
in Figure 12), because it is extremely difficult to do. Lo-
calization of boxes is measured using the intersection over



Figure 6: In relatively low resolution, Faster RCNN detects printed poster physical adversarial stop sign and real stop sign
similarly.

Figure 7: In relatively low resolution, Faster RCNN detects sticker physical adversarial stop sign and real stop sign similarly.

union score; one computes AI/AU , where AI is the area
of intersection between predicted and true box, and AU is
the area of the union of these boxes. For example, YOLO
has a mean Average Precision of 78.6% at an IOU score of
.5 – this means that only boxes with IOU with respect to
ground truth of .5 or greater are counted as a true detec-
tion. Even with very strong modern detectors, scores fall
fast with increasing IOU threshold. How detection systems
predict boxes depends somewhat on the architecture. Faster

RCNN predicts interesting boxes, then classifies them [18].
YOLO uses a grid of cells, where each cell uses features
computed from much of the image to predict boxes and la-
bels near that cell, with confidence information [17]. One
should think of this architecture as an efficient way of pre-
dicting interesting boxes, then classifying them. All this
means that, in modern detector systems, boxes are not cen-
tered cleanly on objects. We are not aware of any literature
on the statistics of box locations with respect to a root coor-



Figure 8: In higher resolution video, YOLO detects printed poster physical adversarial stop sign well. YOLO works better
on higher resolution than lower resolution video.

Figure 9: In higher resolution video, YOLO detects sticker physical adversarial stop sign well. YOLO works better on higher
resolution than lower resolution video.

dinate system for the detected object.

There are several reasons that Evtimov et al.’s attack on
a classifier makes a poor proxy of a detection system.

Close cropping can remove scale and translation ef-
fects: The details of the crop and resize procedure are not
revealed in [3]. However, these details matter. We believe
their results are most easily explained by assuming the sign
was cropped reasonably accurately to its bounding box, then
resized (Table VII of [3], shown for the reader’s conve-
nience here as Figure 12). If the sign is cropped reason-
ably accurately to its bounding box, then resized, the visual
effects of slant and scale are largely removed. In partic-
ular, isotropic resizing removes effects of scale other than
loss of spatial precision in the sampling grid This means the
claim that the adversarial construction is invariant to slant
and scale is moot. Close cropping is not a feature of modern
detection systems, and would make the proxy model poor.

Low resolution boxes: Almost every pixel in an accu-
rately cropped box will testify to the presence of a stop sign.
Thus, very low resolution boxes may mean that fewer pixels
need to be modified to confuse the underlying classifier. In
contrast to the 32x32 boxes of [3], YOLO uses a 7x7 grid
on a 448x448 dimension image; each grid cell predicts pre-

dict bounding box extents and labels. This means that each
prediction in YOLO observes at least 64x64 pixels. The rel-
atively low resolution of the classifier used makes the proxy
model poor.

Cropping and variance: Detection systems like YOLO
or Faster RCNN cannot currently produce accurate bound-
ing boxes. Producing very accurate boxes requires search-
ing a larger space of boxes, and so creates problems with
false positives. While there are post-processing methods to
improve boxes [6], this tension is fundamental (for exam-
ple, see figure 2 and 3). In turn, this means that the clas-
sification procedure within the detector must cope with a
range of shifts between box and object. We speculate that,
in a detection system, this could serve to disrupt adversar-
ial patterns, because the pattern might be presented to the
classification process inside the detector in a variety of lo-
cations relative to the bounding box. In other words, the
adversarial property of the pattern would need to be robust
to shifts and rescales within the box. At the very least, this
effect means that one cannot draw conclusions from the ex-
periments of [3].

Cropping and context: The relatively high variance of
bounding boxes around objects in detector systems has an-



Figure 10: In higher resolution video, Faster RCNN detects printed poster physical adversarial stop sign very well.

Figure 11: In higher resolution video, Faster RCNN detects sticker physical adversarial stop sign very well.

other effect. The detector system sees object context infor-
mation that may have been hidden in the proxy model. For
example, cells in YOLO do not distinguish between pixels
covered by a box and others when deciding (a) where the
box is and (b) what is in it. While the value of this informa-
tion remains moot, its absence means the proxy model is a
poor model.

4. Discussion
We do not claim that detectors are necessarily immune

to physical adversarial examples. Instead, we claim that
there is no evidence as of writing that a physical adversarial
example can be constructed that fools a detector. In earlier
work, we said we had not produced such examples. The
main point of this paper is to point out that others have not,
too; and that fooling a detector is a very different business
from fooling a classifier.

There is a tension between the test-time accuracy of a
classifier, and the ability to construct adversarial examples
that are “like” and “close to” real images but are misclas-
sified. In particular, if there are lots of such things, why is
the classifier accurate on test? How does the test procedure
“know” not to produce adversarial examples? The usual,
and natural, explanation is that the measure of the space
of adversarial examples A under the distribution of images

P (I) is “small”. Notice that A is interesting only if P (A)
is small and for most u ∈ A, P (u) is “big” (i.e. there is not
much point in an adversarial example that doesn’t look like
an image) and there there is at least some of A “far” from
true classifier boundaries (i.e. there is not much point in re-
placing a stop sign with a yield sign, then complaining it is
mislabelled). This means that A must have small volume,
too. IfA has small volume, but it is easy for an optimization
process to find an adversarial example close to any particu-
lar example, then there must also be a piece ofA quite close
to most examples (one can think of “bubbles” or “tubes” of
bad labels threading through the space of images). In this
view, Evtimov et al.’s paper presents an important puzzle.
If one can construct an adversarial pattern that remains ad-
versarial for a three dimensional range of views (two angles
and a scale), this implies that close to any particular pattern
there is a three parameter “sheet” inside A – but how does
the network know to organize its errors into a form that is
consistent with nuisance viewing parameters?

One answer is that it is trained to do so because it is
trained on different views of objects, meaning thatA has in-
ternal structure learned from training examples. While this
can’t be disproved, it certainly hasn’t been proved. This
answer would imply that, in some way, the architecture of
the network can generalize across viewing parameters better



Figure 12: Table VII of [3], reproduced for the reader’s convenience. Note the close crops of stop signs, shown as yellow
boxes. The whole image could not be passed to a stop sign classifier; therefore, some form of box must be produced. In
that paper, the box is produced by cropping and resizing the crop to a standard size. In the text, we argue that this cropping
suppresses the effects of scale and slant. However, it is a poor model of the boxes produced by modern detectors, because it
is placed accurately round the sign.

than it generalizes across labels (after all, the existence of
an adversarial example is a failure to generalize labels cor-
rectly). Believing this requires fairly compelling evidence.
Ockham’s razor suggests another answer: Evtimov et al.,
by cropping closely to the stop sign, removed most of the
effect of slant and scale, and so the issue does not arise.

Whether physical adversarial examples exist that fool a
detector is a question of the first importance. Here are quite
good reasons they might not. An adversarial pattern on a
physical object that could fool a detector would have to be
adversarial in the face of a wide family of parametric dis-
tortions (scale; view angle; box shift inside the detector;
illumination; and so on). While it is quite possible that the
box created by the detector reduces the effects of view angle
and scaling, at least for plane objects, the box shift is an im-
portant effect. There is no evidence that adversarial patterns
exist that can fool a detector. Finding such patterns (or dis-
proving their existence) is an important technical challenge.
More likely to exist, but significantly less of a nuisance, is
a pattern that, viewed under the right circumstances (and so
just occasionally) would fool a detector.
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